Python Libraries

Here’s a comprehensive list of the most important Python libraries for data engineering:
- Pandas – Data manipulation and analysis library
- NumPy – Numerical computing library
- PySpark – Python API for Apache Spark
- Dask – Parallel computing library
- Polars – Fast DataFrame library, alternative to Pandas for large datasets
- dbt (data build tool) – Data transformation tool for analytics
- Apache Airflow – Workflow management platform
- Prefect – Workflow management system
- Dagster – Data orchestrator
- Apache Beam Python SDK – Unified programming model for batch and streaming
- SQLAlchemy – SQL toolkit and ORM
- psycopg2 – PostgreSQL adapter
- pymysql / mysql-connector-python – MySQL adapters
- pyodbc – For connecting to ODBC databases
- snowflake-connector-python – For Snowflake connectivity
- PyArrow – For working with Arrow, Parquet, and other columnar formats
- fastparquet – Alternative Parquet library
- boto3 – AWS SDK for S3 and other AWS services
- azure-storage-blob – For Azure Blob Storage
- google-cloud-storage – For Google Cloud Storage
- Requests – HTTP library for API calls
- FastAPI / Flask – For building APIs
- pydantic – Data validation and settings management
- kafka-python / confluent-kafka – For Kafka integration
- pyspark.streaming – For streaming applications
- Great Expectations – Data validation and documentation
- Pandera – Statistical data validation for pandas
- logging (built-in) – Standard logging library
- Prometheus Client – For metrics collection